Review Scoring¶
Review Scoring related modeling class
-
class
pororo.tasks.review_scoring.
PororoReviewFactory
(task: str, lang: str, model: Optional[str])[source]¶ Bases:
pororo.tasks.utils.base.PororoFactoryBase
Regression based Review scoring using Review Corpus
English (roberta.base.en.review)
dataset: Multilingual Amazon Reviews Corpus (Phillip Keung et al, 2019)
metric: Pearson (86.85), Spearman (86.60)
Japanese (jaberta.base.ja.review)
dataset: Multilingual Amazon Reviews Corpus (Phillip Keung et al, 2019)
metric: Pearson (85.07), Spearman (85.05)
Chinese (zhberta.base.zh.review)
dataset: Multilingual Amazon Reviews Corpus (Phillip Keung et al, 2019)
metric: Pearson (80.12), Spearman (80.01)
Korean (brainbert.base.ko.review_rating)
dataset: Internal data
metric: Pearson (78.03), Spearman (77.93)
Examples
>>> review = Pororo(task="review", lang="en") >>> review("Just what I needed! Perfect for western theme party.") 4.79 >>> review("Received wrong size.") 2.65 >>> review = Pororo(task="review", lang="ja") >>> review("充電あまりしません! 星5だったのに騙されました!") 0.86 >>> review("迅速な対応ありがとうございます。 今後ともよろしくお願いします。") 4.7 >>> review = Pororo(task="review", lang="zh") >>> review("买的两百多的,不是真货,和真的对比了小一圈!特别不好跟30多元的没区别,退货了!不建议买!") 1.47 >>> review("锅外型好可爱,家人喜欢,很适合3口之家使用") 4.88 >>> review = Pororo(task="review", lang="ko") >>> review("그냥저냥 다른데랑 똑같숩니다") 2.96 >>> review("좋습니다 만족해요 배송만 좀 더 빨랐으면..") 3.92