Contextualized Embedding¶
Contextualized Embedding related modeling class
-
class
pororo.tasks.contextualized_embedding.
PororoContextualFactory
(task: str, lang: str, model: Optional[str])[source]¶ Bases:
pororo.tasks.utils.base.PororoFactoryBase
Conduct contextualized embedding
English (roberta.base.en)
dataset: N/A
metric: N/A
Korean (brainbert.base.ko)
dataset: N/A
metric: N/A
Japanese (jaberta.base.ja)
dataset: N/A
metric: N/A
Chinese (zhberta.base.zh)
dataset: N/A
metric: N/A
- Parameters
sent (str) – input sentence to be contextualized embedded
- Returns
sentence embedding with subword units
- Return type
np.array
Examples
>>> cse = Pororo(task="cse", lang="ko") >>> cse("하늘을 나는 새") array([[92.53, 20.24, 32.32, ...], ..., [63.24, 53.19, 45.78, ...]], dtype=float32) # (len(subwords), hidden_dim) >>> cse = Pororo(task="cse", lang="zh") >>> cse("一群人抬头看着建筑物屋顶边缘的3人。") array([[ 0.61136365, 0.24613665, 0.6259908 , ..., 0.32798234, 0.10512973, -0.06808531],..., [-0.00931012, -0.04459633, 1.0253953 , ..., 0.30732906, 0.22213839, 0.25226325]], dtype=float32) >>> cse = Pororo(task="cse", lang="ja") >>> cse("おはようございます") array([[-0.26724914, -0.23364174, -0.07206455, ..., 0.30293447, -0.36008322, 0.24684878], ..., [-0.7470922 , -0.30342472, -0.64015895, ..., -0.17556943, 0.10660946, -0.17191087]], dtype=float32)